

Step 5. Flood Module

ı

Step 5. Flood Module

- Accounts for a reduction in flood damage costs
- Requires at least 3 sets of data

Average Daily	Return Period	Flood Related
Streamflow (cfs)	(years)	Damages (\$)

- Calculates: Annualized Loss = 1/Return Period × Flood Damage Costs
- Compares daily flow to flood flow range and if
 - < smallest flood flow = \$0

smallest to largest flood flow = linearly interpolate for damages

> largest flow = constant at largest flood damage

Flood Module, cont

Limitations

- Input requires DAILY flow not peak flow
 - United States Geological Service (USGS) PeakFQ and state-level regression equations provide peak flows
 - USGS streamflow gages provide average daily flows
- Flood flow must occur during modeled time period
 - Check streamflow without flood module
 - Check precipitation record to identify wet years to model
- Multiple, consecutive flood flows → may overestimate avoided damages

3

Overview

- To create a damage curve
 - Create a flood depth grid
 - Using Arc GIS and FEMA data
 - Using Valley Floor Mapper software
 - Using default data
 - Create a site specific building inventory
 - Using user supplied data
 - Use HAZUS to determine flood damage levels
 - Using user defined flood grid
 - Using default parameters

Developing the Flood Depth Grid

Flood Grid Mapping

- Data Needed for Flood Mapping
 - FEMA National Flood Hazard Layer (NFHL) data
 - Data can be downloaded for the entire state (where available) or by county. (https://msc.fema.gov/portal/advanceSearch)
 - HAZUS download (http://msc.fema.gov/portal/resources/hazus)
 - Elevation data-
 - National Elevation Data (NED) can be obtained at the National Elevation Dataset from the National Map. (http://viewer.nationalmap.gov/viewer/)
 - LiDar data can be found and downloaded from NOAA Digital Coast website (http://coast.noaa.gov/digitalcoast/data/coastallidar) or from state specific GIS websites where available.

Creating Flood Depth Grid-Valley Floor Mapper 1.0

Valley Floor Mapper

- Developed by MACRO (Macroecogical Riverine Synthesis) and part of the RESonate Tool
- Automated GIS-based process designed for ArcGIS that enables the processing of GIS data sources using freely available geospatial datasets. (http://www.macrorivers.org/resonate-model/)

Input required

- Flow direction grid (FDR) and Flow Accumulation Grid (FAC) available nationwide from NHDPlus (http://www.horizon-systems.com/nhdplus/NHDplusV2_data.php)
- Digital Elevation Model (DEM)
- Depth to Flood
 - User can specify constant value or input table of flood depths per stream segment

Developing Building Inventory

Optimization Scenarios

- Important to know the sensitivity of results to input data and assumptions
- Actions most often part of the solution =
 - Most likely to be cost-effective actions

Do NOT perform optimization and take the results as a prescription

>WMOST is most appropriate for narrowing the decisions to those actions that are most likely to be cost-effective for meeting goals

4

Optimization Scenarios

Are there management options not readily available in WMOST that you would like to evaluate?

Examples of IWRM

- Massachusetts
 - Water Management Act, 2014
 - Gallon for gallon credit for stormwater recharge
- Great Bay, NH
 - Cost-savings in cooperative nitrogen reductions
- State of California
 - Integrated Regional Water Management Planning Act, 2002
- EPA
 - Integrated permitting for wastewater and stormwater, 2011
 - Kansas City, KS; Seattle and King County, WA; and Cincinnati, OH
- American Water Resources Association
 - Case Studies in Integrated Water Resources Management: From Local Stewardship to National Vision
 - 2 state-level (OR, CA); 3regional; 2scientifically complex

WMA 2014, UNH 2016, CA 2002, EPA 2011, AWRA 2012

5 I

Considerations for Model Setup – Reconciling real world conditions with modeling options

Model Setup

- Demand / Water services
 - Subbasin "demand"
 - Specific fraction of total demand
 - Based on historic, projected or desired pumping from subbasin
 - Total town demand
 - Add interbasin transfer capacity = capacity of wells in other subbasins
- Wastewater
 - Septic, wastewater treatment plant and/or interbasin transfer
 - Must be for the users represented by specified demand

Model Setup

- More on surface waters
 - Water land use or reservoir/ surface storage
 - Subtract from "water land use" the area that is modeled as reservoir/ surface storage
 - Wetlands should be represented as land use

Calibration and Validation

Calibration

- Setup model for known conditions (for a portion of the measured flow record)
- No management actions
- No target streamflows or outflows
- Adjust inputs and parameters as needed for good fit

Validation

- Run model for known conditions (for another portion of the measured flow recrod)
- No management actions
- No target streamflows or outflows
- No further adjustments

Evaluating "Goodness of Fit"

- Focus of management (Harmel et al 2014)
 - Low flow
 - High flow
 - Average flow
- Evaluation methods
 - Visual evaluation and patterns of fit (or lack of fit)
 - Statistics (Price et al 2012)
 - Flood peaks: Nash-Sutcliffe efficiency (NSE)
 - Lower flows: Modified Nash-Sutcliffe efficiency (MNS)
 - Flow variability: ratio of the simulated to observed standard deviations (RSD)
 - Statistics (Moriasi et al 2007)
 - For streamflow: NSE >0.50, ratio of the root mean square error to the standard deviation of measured data (RSR) <=0.70 and percent bias (PBIAS) +/- 25%

65

Calibration and Validation

- Adjust inputs, focusing on most uncertain parameters and data
 - Change groundwater recession coefficient [groundwater tab]

Groundwater	Return to Input		Initial KGw= 0.	07	
Groundwater recess	ion coefficient	Q	0.08	[1/	me step]
Initial groundwater	volume		90	[MG]
Minimum volume			0	[MG]
Maximum volume			9,050	[MG]

Apply multiplier to baseline runoff and/or recharge timeseries [runoff/recharge tabs]

Review your problem formulation

Calibration and Validation

- It's not working! I get "gazillion" dollars in annual costs and no other outputs... What's going on?
 - There is no feasible solution to your problem

Total Annual Cost	\$1,000,000,000,000,000,000,000,000.0	million
Flood Damages	\$0.0	million
Make-up Water Penalty	\$0.0	million
Water Revenue	\$0.0	million
Wastewater Revenue	\$0.0	million

- Turn on the "make-up" surface water option on the Infrastructure tab
- Start with:
 - Low groundwater recession coefficient (e.g., 0.01) and
 - Adjust initial groundwater volume and
 - High maximum volume

69

Future Directions

WMOST Future Directions: 2016

- Water quality module(s)
- Combined sewer overflow module
- Climate change modules
 - Facilitate data import
 - Facilitate comparisons of climate change scenarios
- Expanded data availability
 - Regional coverage
 - Climate change scenarios
- Adding more case studies, user support

Future Directions: 2017-2019

- More data
 - Automated import via internet (time series, HRUs by HUC12, ...)
 - Both historic and future climate scenarios
 - Compatibility with nationwide models
 - HAWQS SWAT model at HUC12 scale
 - USGS Monthly water balance model
- Robust decision-making modules
 - How do you plan for adaptive management in the face of uncertain climate futures?
- Green infrastructure co-benefits, e.g., health, energy savings
- Multi-objective decision making
 - How can you evaluate tradeoffs across multiple objectives?
- Scaling-up and linking watersheds
 - How can we scale up WMOST for larger watersheds and optimize across multiple watersheds?
- More case studies...

Technical Support Discussion

- How can we best support communities and watershed organizations interested in using WMOST?
- What kinds of training would be most useful?
 - Face-to-face hands-on trainings: good venues?
 - Webinars: Full day or series of shorter presentations
 - Downloadable tutorials
 - Follow-up interactive training sessions
 - Problem formulation: How would I set up WMOST for this kind of problem?
 - · Presentation/discussion of additional case studies
 - Trouble-shooting
 - Etc.
 - On-line "office hours" submit your question ahead of time

77

Community of Practice

- Would it be useful to develop a community of practice for people using WMOST?
- What features would be useful?
 - Email distribution list?
 - Distribute updates
 - Discussion of common problems/solutions
 - Post case study summaries
 - Help identifying useful data sources
 - · Solicit case studies for EPA to assist with in testing new modules
 - Google group?
 - Quarterly training updates?
 - Other?

Feedback -

Please fill out the short survey.

Thank you!

79

References

- Global Water Partnership Technical Advisory Committee. 2000. Integrated Water Resources, TAC Background Papers (No. 4). Stockholm: Global Water Partnership. www.gwp.org/Global/GWP-CACENA_Files/ en/pdf/tec04.pdf.
- AWRA, American Water Resources Association. 2011.AWRA Position Statement: Call for a National Water Vision and Strategy. http://www.awra.org/policy/policy-statements-- water-vision.html.
- USACE, United States Army Corps of Engineers. 2010. National Report: Responding to National Water Resources Challenges, Building Strong Collaborative Relationships for a Sustainable Water Resources Future. Washington, D.C. http://www.buildingcollaboration-for-water.org/ Documents/nationalreport_final.pdf.
- FAO, Food and Agriculture Organization of the United Nations. 2016. Dublin Principles. http://www.fao.org/ag/wfe2005/docs/iwrm_background.pdf
- EU, European Union. 2000. European Union Water Framework Directive. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060
- EPA, Environmental Protection Agency. 2016.
 https://cfpub.epa.gov/watertrain/pdf/modules/watershed_management.pdf;
 https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/watershed-approach
- EPA. 1996. https://www.epa.gov/sites/production/files/2015-06/documents/watershed-approach-framework.pdf

References

- State of California. 2002. Integrated Regional Water Management. http://www.water.ca.gov/irwm/
- EPA. Integrated Permitting. 2011. https://www.epa.gov/npdes/integratedmunicipalplans-0.pdf; Integrate permitting, main website: https://www.epa.gov/npdes/integrated-planning-municipal-stormwater-and-wastewater
- AWRA. 2012. Case Studies in Integrated Water Resources Management: From Local Stewardship to National Vision, http://www.awra.org/committees/AWRA-Case-Studies-IWRM.pdf
- UNH, University of New Hampshire. 2016. https://carsey.unh.edu/publication/cleanwater?utm_source=2016_04_26_Watts&utm_campaign=2016_04_26_Watts&utm_medium=
- EPA. 2003. National Water Quality Trading Policy.
 http://www.epa.ohio.gov/portals/35/WQ trading/usepatradingpolicyfinal2003.pdf and 2009.
 (Trading toolkit, 2009 https://www3.epa.gov/npdes/pubs/wqtradingtoolkit_fundamentals.pdf)
- AWRA. 2012. Case Studies, http://www.awra.org/committees/AWRA-Case-Studies-IWRM.pdf
- Limbrunner, J. et al. 2005. A parsimonious watershed model, Computer Models of Watershed Hydrology, 2nd ed., edited by V.P. Singh, CRC Press, Boca Raton, FL.

81

References

- FEMA National Flood Hazard Layer (NFHL) data , https://msc.fema.gov/portal/advanceSearch
- Elevation data
 - National Elevation Data can be obtained at the National Elevation Dataset from the National Map. http://viewer.nationalmap.gov/viewer/
 - LiDar data, NOAA Digital Coast website, http://coast.noaa.gov/digitalcoast/data/coastallidar
- Massachusetts specific data, Oliver http://maps.massgis.state.ma.us/map_ol/oliver.php
- HAZUS, http://msc.fema.gov/portal/resources/hazus
- Flow and Stream Data (NHDPlus), http://www.horizon-systems.com/nhdplus/NHDplusV2_data.php
- Valley Floor Mapper (RESonate), http://www.macrorivers.org/resonate-model/
- WMA, Water Management Act. 2014. http://www.mass.gov/eea/docs/dep/water/resources/n-thru-y/wmafaq.pdf
- Harmel, R.D. et al. 2014. "Evaluating, interpreting, and communicating performance of hydrology/water quality models considering intended use: A review and recommendation." Environmental Modeling & Software, 57:40-51.

References and Picture credits

- Price, K. et al 2012. "Tradeoffs among watershed model calibration targets for parameter estimation." Water Resources Research, 48.
- Moriasi, D.N. et al. 2007. "Model evaluation guidelines for systematic quantification of accuracy in watershed simulations." Transactions of the American Society of Agricultural and Biological Engineers, 50(3):885-900.
- Title page: Daniel P. Loucks and Eelco van Beek. 2005. Water Resources Systems Planning and Management: An Introduction to Methods, Models and Applications.
- Slide 7
 - Dry river bed. Ipswich River Watershed Association. 2016. Personal Communication.
 - Monponsett Pond: http://www.ecori.org/pollution-contamination/2016/1/11/toxic-algae-blooms-ruin-popular-recreational-waterhole
- Slide 8: http://www.raritanbasin.org/Pictures/watershed.jpg
- Slide 47
 - http://gazettereview.com/2015/07/physicians-influenced-by-peers-when-it-comes-to-prescriptions/
 - http://community.temis.com/marketplace?p_p_id=temismarketplace&article_Id=41661